

 Navigation

 	
 index

 	JMSPaymentCoreBundle stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/jmspaymentcorebundle/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/jmspaymentcorebundle/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	JMSPaymentCoreBundle stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/file.png

_static/plus.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

Resources/doc/plugins.html

 Navigation

 		
 index

 		JMSPaymentCoreBundle stable documentation »

Plugins

Introduction

A plugin is a flexible way of providing access to a specific payment back end,
payment processor, or payment service provider.

Note

If you are coming from symfony1, the term “plugin” as used by this bundle
has nothing to do with symfony1’s plugin extension system.

Plugins are used to execute financial transactions
against a payment service provider, such as Paypal.

Implementing a Custom Plugin

The easiest way is to simply extend the provided AbstractPlugin class, and override
the remaining abstract methods:

<?php

class PaypalPlugin extends \JMS\Payment\CoreBundle\Plugin\AbstractPlugin
{
 public function processes($name)
 {
 return 'paypal' === $name;
 }
}

Now, you only need to set-up your plugin as a service, and it will be added to the
plugin controller automatically:

That’s it! You just created your first plugin :) Right now, it does not do anything
useful, but we will get to the specific transactions that you can perform in
the next section.

Available Transaction Types

Each plugin may implement a variety of available transaction types. Depending on the
used payment method, and the capabilities of the backend, you rarely need all of them.

Following is a list of all available transactions, and two exemplary payment method
plugins. A “x” indicates that the method is implement, “-” that it is not:

		Financial Transaction
		CreditCardPlugin
		ElectronicCheckPlugin

		checkPaymentInstruction
		x
		x

		validatePaymentInstruction
		x
		x

		approveAndDeposit
		x
		x

		approve
		x
		-

		reverseApproval
		x
		-

		deposit
		x
		x

		reverseDeposit
		x
		-

		credit
		x
		-

		reverseCredit
		x
		-

If you are unsure which transactions to implement, have a look at the PluginInterface
which contains detailed descriptions for each of them.

Tip

In cases, where a certain method does not make sense for your payment backend,
you should throw a FunctionNotSupportedException. If you extend the AbstractPlugin
base class, this is already done for you.

Available Exceptions

Exceptions play an important part in the communication between the different payment plugin,
and the PluginController which manages them.

Following is a list with available exceptions, and how they are treated by the PluginController.
Of course, you can also add your own exceptions, but it is recommend that you sub-class
an existing exception when doing so.

Tip

All exceptions which are relevant for plugins are located in the namespace
JMS\Payment\CoreBundle\Plugin\Exception.

		Class
		Description
		Payment Plugin Controller
Interpretation

		Exception
		Base exception used by all
exceptions thrown from
plugins.
		Causes any transaction to
be rolled back. Exception
will be re-thrown.

		FunctionNotSupportedException
		This exception is thrown
whenever a method on the
interface is not supported
by the plugin.
		In most cases, this causes
any transactions to be
rolled back. Notable
exceptions to this rule:
checkPaymentInstruction,
validatePaymentInstruction

		InvalidDataException
		This exception is thrown
whenever the plugin realizes
that the data associated
with the transaction is
invalid.
		Causes any transaction to
be rolled back. Exception
will be re-thrown.

		InvalidPaymentInstructionException
		This exception is typically
thrown from within either
checkPaymentInstruction, or
validatePaymentInstruction.
		Causes PaymentInstruction
to be set to
STATE_INVALID.

		BlockedException
		This exception is thrown
whenever a transaction
cannot be processed.

The exception must only be
used when the situation is
temporary, and there is a
chance that the transaction
can be performed at a later
time successfully.

		Sets the transaction to
STATE_PENDING, and
converts the exception to
a Result object.

		TimeoutException
(sub-class of BlockedException)
		This exception is thrown
when there is an enduring
communication problem with
the payment backend system.
		Sets the transaction to
STATE_PENDING, and
converts the exception to
a Result object.

		ActionRequiredException
(sub-class of BlockedException)
		This exception is thrown
whenever an action is
required before the
transaction can be completed
successfully.

A typical action would be
for the user to visit an
URL in order to authorize
the payment.

		Sets the transaction to
STATE_PENDING, and
converts the exception to
a Result object.

Payment-related User Data

The Form Type

The form type is necessary for collecting, and validating the user data that is necessary
for your payment method. In the following, we assume that we are designing a form type for
credit card payment which could look like this:

<?php

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;

class CreditCardType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('holder', 'text', array('required' => false))
 ->add('number', 'text', array('required' => false))
 ->add('expires', 'date', array('required' => false))
 ->add('code', 'text', array('required' => false))
 ;
 }

 public function getName()
 {
 return 'credit_card';
 }
}

Note

Make sure to declare all fields as non-required. This is merely affecting
the client-side validation, server-side validation is not affected.

Configuring Your Form Type

Now, we need to wire the form type with the dependency injection container:

Validating the Submitted User Data

Validation is handled by your Plugin class. It contains two methods for this:

		checkPaymentInstruction (fast): validates the submitted data, but does not make any API calls to an external service

		validatePaymentInstruction (thorough): does everything that checkPaymentInstruction does, but may also make API calls

We are now going to implement the checkPaymentInstruction method for our form type above:

<?php

use JMS\Payment\CoreBundle\Plugin\AbstractPlugin;
use JMS\Payment\CoreBundle\Model\PaymentInstructionInterface;
use JMS\Payment\CoreBundle\Plugin\ErrorBuilder;

class CreditCardPlugin extends AbstractPlugin
{
 public function checkPaymentInstruction(PaymentInstructionInterface $instruction)
 {
 $errorBuilder = new ErrorBuilder();
 $data = $instruction->getExtendedData();

 if (!$data->get('holder')) {
 $errorBuilder->addDataError('holder', 'form.error.required');
 }
 if (!$data->get('number')) {
 $errorBuilder->addDataError('number', 'form.error.required');
 }

 if ($instruction->getAmount() > 10000) {
 $errorBuilder->addGlobalError('form.error.credit_card_max_limit_exceeded');
 }

 // more checks here ...

 if ($errorBuilder->hasErrors()) {
 throw $errorBuilder->getException();
 }
 }

 public function processes($method)
 {
 return 'credit_card' === $method;
 }
}

Note

The data errors are automatically mapped to the respective fields of the form.
Global errors are applied to the form itself.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Resources/doc/events.html

 Navigation

 		
 index

 		JMSPaymentCoreBundle stable documentation »

Events

Introduction

The PluginController dispatches events for certain payment changes. This can be
used by your application to perform certain actions for example when a payment
is successful.

Tip

For a list of all available events, you can also take a look at the class
JMS\Payment\CoreBundle\PluginController\Event\Events.

Payment State Change Event

Name: payment.state_change

Event Class: JMS\Payment\CoreBundle\PluginController\Event\PaymentStateChangeEvent

This event is dispatched directly after the state of a payment changed. All
related entities have already been updated.

You have access to the Payment, the PaymentInstruction, the new state, and
the old state of the payment.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

search.html

 Navigation

 		
 index

 		JMSPaymentCoreBundle stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Resources/doc/installation.html

 Navigation

 		
 index

 		JMSPaymentCoreBundle stable documentation »

Installation

1. Using Composer (recommended)

To install JMSPaymentCoreBundle with Composer just add the following to your
composer.json file:

// composer.json
{
 // ...
 require: {
 // ...
 "jms/payment-core-bundle": "master-dev"
 }
}

Note

Please replace master-dev in the snippet above with the latest stable
branch, for example 1.0.*.

Then, you can install the new dependencies by running Composer’s update
command from the directory where your composer.json file is located:

$ php composer.phar update

Now, Composer will automatically download all required files, and install them
for you. All that is left to do is to update your AppKernel.php file, and
register the new bundle:

<?php

// in AppKernel::registerBundles()
$bundles = array(
 // ...
 new JMS\Payment\CoreBundle\JMSPaymentCoreBundle(),
 // ...
);

2. Using the deps file (Symfony 2.0.x)

First, checkout a copy of the code. Just add the following to the deps
file of your Symfony Standard Distribution:

[JMSPaymentCoreBundle]
 git=git://github.com/schmittjoh/JMSPaymentCoreBundle.git
 target=bundles/JMS/Payment/CoreBundle

Then register the bundle with your kernel:

<?php

// in AppKernel::registerBundles()
$bundles = array(
 // ...
 new JMS\PaymentCoreBundle\JMSPaymentCoreBundle(),
 // ...
);

Make sure that you also register the namespace with the autoloader:

<?php

// app/autoload.php
$loader->registerNamespaces(array(
 // ...
 'JMS' => __DIR__.'/../vendor/bundles',
 // ...
));

Now use the vendors script to clone the newly added repositories
into your project:

$ php bin/vendors install

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		JMSPaymentCoreBundle stable documentation »

 #JMSPaymentCoreBundle [image: Build Status] [http://travis-ci.org/schmittjoh/JMSPaymentCoreBundle]

JMSPaymentCoreBundle provides the foundation for using different payment backends in Symfony projects. It abstracts away the differences between payment protocols and offers a simple and unified API for performing financial transactions.

Key Points:

		Simple, Unified API (integrate once, and use any payment provider)

		Persistence of Financial Entities (such as payments, transactions, etc.)

		Transaction Management including Retry Logic

		Encryption of Sensitive Data

		Supports many [http://jmsyst.com/bundles/JMSPaymentCoreBundle/master/payment_backends] payment backends out of the box

Documentation:
Resources/doc [http://jmsyst.com/bundles/JMSPaymentCoreBundle]

Code License:
Resources/meta/LICENSE [https://github.com/schmittjoh/JMSPaymentCoreBundle/blob/master/Resources/meta/LICENSE]

Documentation License:
Resources/doc/LICENSE [https://github.com/schmittjoh/JMSPaymentCoreBundle/blob/master/Resources/doc/LICENSE]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Resources/doc/payment_backends.html

 Navigation

 		
 index

 		JMSPaymentCoreBundle stable documentation »

Available Payment Backends

Note

If you have implemented a payment backend, feel free to add yourself
to this list by sending a pull request on GitHub.

This is an incomplete list of implemented payment backends:

		Paypal: JMSPaymentPaypalBundle [http://jmsyst.com/bundles/JMSPaymentPaypalBundle]

		Dotpay: ETSPaymentDotpayBundle [https://github.com/ETSGlobal/ETSPaymentDotpayBundle]

		Ogone: ETSPaymentOgoneBundle [https://github.com/ETSGlobal/ETSPaymentOgoneBundle]

		Merchant e-Solutions (Trident): PaymentMeSBundle [https://github.com/immersivelabs/PaymentMeSBundle]

		Qiwi: ChewbaccoPaymentQiwiWalletBundle [https://github.com/chewbacco/ChewbaccoPaymentQiwiWalletBundle]

		Be2Bill (Rentabiliweb): PaymentBe2billBundle [https://github.com/rezzza/PaymentBe2billBundle]

		Robokassa: KarserRobokassaBundle [https://github.com/karser/RobokassaBundle]

		Adyen: RuudkPaymentAdyenBundle [https://github.com/ruudk/PaymentAdyenBundle]

		Mollie: RuudkPaymentMollieBundle [https://github.com/ruudk/PaymentMollieBundle]

		Multisafepay: RuudkPaymentMultisafepayBundle [https://github.com/ruudk/PaymentMultisafepayBundle]

		Stripe: RuudkPaymentStripeBundle [https://github.com/ruudk/PaymentStripeBundle]

		Atos SIPS: KptivePaymentSipsBundle [https://github.com/KptiveStudio/KptivePaymentSipsBundle]

		Paymill: MemeoirsPaymillBundle [https://github.com/memeoirs/paymill-bundle]

		Webpay: JakubZapletalPaymentWebpayBundle [https://github.com/jakubzapletal/payment-webpay-bundle]

		YandexKassa: RsipoYandexKassaBundle [https://github.com/rispo-service/RispoYandexKassaBundle]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

Resources/doc/usage.html

 Navigation

 		
 index

 		JMSPaymentCoreBundle stable documentation »

Usage

Introduction

In this chapter, we will explore how you can integrate JMSPaymentCoreBundle
into your application. We will assume that you already have created an order
object or equivalent. This could look like:

<?php

use Doctrine\ORM\Mapping as ORM;
use JMS\Payment\CoreBundle\Entity\PaymentInstruction;

class Order
{
 /** @ORM\OneToOne(targetEntity="JMSPaymentCore:PaymentInstruction") */
 private $paymentInstruction;

 /** @ORM\Column(type="string", unique = true) */
 private $orderNumber;

 /** @ORM\Column(type="decimal", precision = 2) */
 private $amount;

 // ...

 public function __construct($amount, $orderNumber)
 {
 $this->amount = $amount;
 $this->orderNumber = $orderNumber;
 }

 public function getOrderNumber()
 {
 return $this->orderNumber;
 }

 public function getAmount()
 {
 return $this->amount;
 }

 public function getPaymentInstruction()
 {
 return $this->paymentInstruction;
 }

 public function setPaymentInstruction(PaymentInstruction $instruction)
 {
 $this->paymentInstruction = $instruction;
 }

 // ...
}

Note

An order object, or the like is not strictly necessary, but since it is
regularly available, we will be using it in this chapter for demonstration
purposes.

Choosing the Payment Method

Usually, you want to give a potential customer some options on how to pay. For
this, JMSPaymentCoreBundle ships with a special form type, jms_choose_payment_method,
which we will leverage.

Note

In the following examples, we will make use of JMSDiExtraBundle [http://jmsyst.com/bundles/JMSDiExtraBundle], and
SensioFrameworkExtraBundle [http://symfony.com/doc/current/bundles/SensioFrameworkExtraBundle/index.html]. This is by no means required when you implement
this in your own application though.

Warning

We have completely left out any security considerations, in a real-world
scenario, you have to make sure the following actions are sufficiently
covered by access rules, for example by using @PreAuthorize from
JMSSecurityExtraBundle [http://jmsyst.com/bundles/JMSSecurityExtraBundle].

<?php

use JMS\DiExtraBundle\Annotation as DI;
use JMS\Payment\CoreBundle\Entity\Payment;
use JMS\Payment\CoreBundle\PluginController\Result;
use JMS\Payment\CoreBundle\Plugin\Exception\ActionRequiredException;
use JMS\Payment\CoreBundle\Plugin\Exception\Action\VisitUrl;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;
use Symfony\Component\HttpFoundation\RedirectResponse;

/**
 * @Route("/payments")
 */
class PaymentController
{
 /** @DI\Inject */
 private $request;

 /** @DI\Inject */
 private $router;

 /** @DI\Inject("doctrine.orm.entity_manager") */
 private $em;

 /** @DI\Inject("payment.plugin_controller") */
 private $ppc;

 /**
 * @Route("/{orderNumber}/details", name = "payment_details")
 * @Template
 */
 public function detailsAction(Order $order)
 {
 $form = $this->getFormFactory()->create('jms_choose_payment_method', null, array(
 'amount' => $order->getAmount(),
 'currency' => 'EUR',
 'default_method' => 'payment_paypal', // Optional
 'predefined_data' => array(
 'paypal_express_checkout' => array(
 'return_url' => $this->router->generate('payment_complete', array(
 'orderNumber' => $order->getOrderNumber(),
), true),
 'cancel_url' => $this->router->generate('payment_cancel', array(
 'orderNumber' => $order->getOrderNumber(),
), true)
),
),
));

 if ('POST' === $this->request->getMethod()) {
 $form->bindRequest($this->request);

 if ($form->isValid()) {
 $this->ppc->createPaymentInstruction($instruction = $form->getData());

 $order->setPaymentInstruction($instruction);
 $this->em->persist($order);
 $this->em->flush($order);

 return new RedirectResponse($this->router->generate('payment_complete', array(
 'orderNumber' => $order->getOrderNumber(),
)));
 }
 }

 return array(
 'form' => $form->createView()
);
 }

 // ...

 /** @DI\LookupMethod("form.factory") */
 protected function getFormFactory() { }
}

The jms_choose_payment_method form type will automatically render a form
with all available payment methods. Upon binding, the form type will validate
the data for the chosen payment method, and on success will give us a valid
PaymentInstruction instance back.

You might want to add extra costs for a specific payment method. You can easily
handle this by passing on a closure to the amount of the form:

<?php

use JMS\Payment\CoreBundle\Entity\ExtendedData;

$form = $this->getFormFactory()->create('jms_choose_payment_method', null, array(
 'amount' => function($currency, $paymentSystemName, ExtendedData $data) use ($order) {
 if ('paypal_express_checkout' == $paymentSystemName) {
 return $order->getAmount() * 1.05;
 }

 return $order->getAmount();
 },

 // ...
));

Depositing Money

In the previous section, we have created our PaymentInstruction. Now, we
will see how we can actually deposit money in our account. As you saw above
in the detailsAction, we redirected the user to the payment_complete
route for which we will now create the corresponding action in our controller:

<?php

use JMS\DiExtraBundle\Annotation as DI;
use JMS\Payment\CoreBundle\Entity\Payment;
use JMS\Payment\CoreBundle\PluginController\Result;
use JMS\Payment\CoreBundle\Plugin\Exception\ActionRequiredException;
use JMS\Payment\CoreBundle\Plugin\Exception\Action\VisitUrl;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Template;
use Symfony\Component\HttpFoundation\RedirectResponse;

/**
 * @Route("/payments")
 */
class PaymentController
{
 /** @DI\Inject */
 private $request;

 /** @DI\Inject */
 private $router;

 /** @DI\Inject("doctrine.orm.entity_manager") */
 private $em;

 /** @DI\Inject("payment.plugin_controller") */
 private $ppc;

 // ... see previous section

 /**
 * @Route("/{orderNumber}/complete", name = "payment_complete")
 */
 public function completeAction(Order $order)
 {
 $instruction = $order->getPaymentInstruction();
 if (null === $pendingTransaction = $instruction->getPendingTransaction()) {
 $payment = $this->ppc->createPayment($instruction->getId(), $instruction->getAmount() - $instruction->getDepositedAmount());
 } else {
 $payment = $pendingTransaction->getPayment();
 }

 $result = $this->ppc->approveAndDeposit($payment->getId(), $payment->getTargetAmount());
 if (Result::STATUS_PENDING === $result->getStatus()) {
 $ex = $result->getPluginException();

 if ($ex instanceof ActionRequiredException) {
 $action = $ex->getAction();

 if ($action instanceof VisitUrl) {
 return new RedirectResponse($action->getUrl());
 }

 throw $ex;
 }
 } else if (Result::STATUS_SUCCESS !== $result->getStatus()) {
 throw new \RuntimeException('Transaction was not successful: '.$result->getReasonCode());
 }

 // payment was successful, do something interesting with the order
 }
}

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Resources/doc/index.html

 Navigation

 		
 index

 		JMSPaymentCoreBundle stable documentation »

JMSPaymentCoreBundle

Introduction

JMSPaymentCoreBundle provides the foundation for different payment backends.
It abstracts away the differences between payment protocols, and offers a
simple, and unified API for performing financial transactions.

Key Points:

		Simple, Unified API (integrate once, and use any payment provider)

		Persistence of Financial Entities (such as payments, transactions, etc.)

		Transaction Management including Retry Logic

		Encryption of Sensitive Data

Documentation

		Installation

		Configuration

		The Model

		Usage

		Available Payment Backends

License

The code is released under the business-friendly Apache2 license [http://www.apache.org/licenses/LICENSE-2.0.html].

Documentation is subject to the Attribution-NonCommercial-NoDerivs 3.0 Unported
license [http://creativecommons.org/licenses/by-nc-nd/3.0/].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Resources/doc/configuration.html

 Navigation

 		
 index

 		JMSPaymentCoreBundle stable documentation »

Configuration

Initial Configuration

The configuration is as easy as choosing a random secret string which we will
be using for encrypting your data if you have requested this:

Note

If you change the secret, then all data encrypted with the old secret
will become unreadable.

Payment Backend Configuration

The different payment backends which are provided by
additional bundles likely also require some form of configuration; please see
their documentation.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

Resources/doc/model.html

 Navigation

 		
 index

 		JMSPaymentCoreBundle stable documentation »

The Model

Introduction

Before we are going to see how we can conduct payments, let me
give you a quick overlook over the model classes, and their purpose.

PaymentInstruction

A PaymentInstruction is the first object that you need to create. It contains
information such as the total amount, the payment method, the currency, and
any data that is necessary for the payment method, for example credit card
information.

Tip

Any payment related data may be automatically encrypted if you request this.

Below you find the different states that a PaymentInstruction can go through:

Payment

Each PaymentInstruction may be splitted up into several payments. A Payment
always holds an amount, and the current state of the work-flow, such as
initiated, approved, deposited, etc.

This allows you for example to request a fraction of the total amount to be
deposited before an order ships, and the rest afterwards.

Below, you find the different states that a Payment can go through:

FinancialTransaction

Each Payment may have several transactions. Each FinancialTransaction
represents a specific interaction with the payment backend. In the case of
a credit card payment, this could for example be an authorization transaction.

Note

There may only ever be one open transaction for each PaymentInstruction
at a time. This is enforced, and guaranteed.

Below, you find the different states that a FinancialTransaction can go through:

 © Copyright 2016.
 Created using Sphinx 1.3.5.

